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Sample Solutions Exercise 5

Exercise 5.1: Polynomial action (3P)

In the lecture we derived the action of a point particle with mass m in a potential V :

S[x, ẋ] =

∫ τB

τA

(
−mc

√
−ηµν ẋµẋν + V (x)

)
dτ.

Some theorists do not like this action because of the nasty square root. They would rather
prefer a polynomial action. In this exercise let us study the following polynomial action

S[x, ẋ, ξ] =

∫ τB

τA

L(x, ẋ, ξ) dτ =

∫ τB

τA

( 1

2ξ
ẋµẋ

µ − ξm2c2

2
+ V (x)

)
dτ,

where ξ(τ) is an additional independent function.

(a) Compute the variation δS = 0 with respect to δxµ and δξ and derive the corre-
sponding equations of motion. (2P)

(b) Insert the solution for ξ(τ) into the other equation of motion and show that we get
the same results as for the ordinary action (see lecture notes). (1P)

Sample Solution

(a) The variation of the action reads

δS =

∫
dτ
( ∂L
∂xµ

δxµ +
∂L

∂ẋµ
δẋµ +

∂L

∂ξ
δξ
)
.

The variation δξ(τ) is independent while the variations δxµ and δẋµ are not
independent. As usual, we get rid of δẋµ via integration by parts: (1P)

δS =

∫
dτ
(( ∂L

∂xµ
− d

dτ
∂L

∂ẋµ

)
δxµ +

∂L

∂ξ
δξ
)
.

With the given Lagrangian

L(x, ẋ, ξ) =
1

2ξ
ẋµẋ

µ − ξm2c2

2
+ V (x)

the equations of motion read: (1P)

∂L

∂xµ
− d

dτ
∂L

∂ẋµ
= 0 ⇒ d

dτ
pµ =

d
dτ

ẋµ
ξ

=
∂V

∂xµ
.

∂L

∂ξ
= − 1

2ξ2
ẋµẋ

µ − m2

2
= 0 ⇒ ξ =

1

mc

√
−ẋµẋµ
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(b) If we insert the solution of the second equation into the first one we get: (1P)

d
dτ
pµ =

d
dτ

mc ẋµ√
−ẋν ẋν

=
∂V

∂xµ
.

The generalized momentum and the equations of motion are identical with
those of the usual action with the square root.

Exercise 5.2: String Theory (9P)

So far we have understood the physics of a relativistic particle.
Such a particle is a zero-dimensional object which moves on a
one-dimensional world line parameterized e.g. by λ 7→ x(λ).
For the action we have simply chosen the line integral over the
relativistic length element ds =

√
−ẋµẋµ dλ.

Let us now do string theory. A string is a one-dimensional object
which moves on a two-dimensional world sheet parameterized
two parameters, e.g. by λ1, λ2 7→ x(λ1, λ2).

(a) As usual, the relativistic line element in the embedding
space R3+1 is ds2 = ηµν dxµ dxν . On the world sheet the
corresponding line element can be expressed as ds2 = gij dλi dλj, where the Latin
indices run over 1,2 and where the metric gij depends on the position on the world
sheet. Give a general expression for gij. (1P)

(b) Prove: In the ordinary Euclidean Rn an infinitesimal area element dA spanned by

two vectors d~a and d~b is given by dA =

√
( d~a · d~a)( d~b · d~b)− ( d~a · d~b)2. (1P)

(c) Guess an analogous formula for the area element spanned by da and db in the
3+1-dimensional Minkowski space. (1P)

(d) Let da and db be the displacements on the world sheet due to a variation of the
parameters by dλ1 and dλ2, respectively. Show that the area element is given by
dA =

√
|g| dλ1 dλ2, where g is the determinant of gij. (1P)

(e) The Nambu-Goto action is defined as being proportional to the area of the sheet

SNG = −T
∫

dA

where T > 0 is a coupling constant (string tension). In a given parameterization of
the world sheet, this action can be expressed as

SNG =

∫
LNG

(
{∂xµ
∂λ1
}, {∂xν

∂λ2
}
)
dλ1 dλ2.

Determine the Lagrange density LNG. (1P)

(f) Analogous to the particle momentum pµ = ∂L
∂ẋµ

, the string momentum is defined as

Πi
µ =

∂LNG
∂
(
∂xµ

∂λi

) .
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As there is no potential, the equations of motion are then simply given by ∂iΠi
µ = 0.

Show that these classical equations of motion are equivalent to the analog of the
wave equation �xµ = 0, where � is the so-called Laplace-Beltrami operator:
(2P)

�xµ = 0 , � =
1√
|g|
∂i
√
|g| gij∂j

Hint: gij is the inverse matrix of gij.
(g) String theorist often prefer a different action, namely, the Polyakov action

SP = − 1

4πα

∫
dλ1 dλ2

√
|g| gij ∂ixµ∂jxνηµν .

This action is sometimes easier to handle since it is polynomial in the coordina-
tes (no square root). Show that this action renders exactly the same equations of
motion. (2P)

Sample Solution

(a) Simply apply the chain rule in the parameters

ds2 = ηµν dxµ(λ1, λ2) dxν(λ1, λ2)

= ηµν

(∂xµ
∂λi

dλi
)(∂xν

∂λj
dλj
)

=
∂xµ
∂λi

∂xµ

∂λj︸ ︷︷ ︸
=gij(λ1,λ2)

dλi dλj

⇒ gij =
∂xµ
∂λi

∂xµ

∂λj
.

(b) The scalar product can be interpreted as d~a · d~b = | d~a| | d~b| cosφ, where φ is
the angle between the vectors. This is valid in any dimension. The infinitesimal
area, on the other hand, is dA = | d~a| | d~b| sinφ. Using sin2 φ = 1− cos2 φ we
get

dA2 = ( d~a · d~a) ( d~y · d~b) sin2 φ

= ( d~a · d~a) ( d~y · d~b) − ( d~a · d~a) ( d~y · d~b) cos2 φ

= ( d~a · d~a) ( d~y · d~b) − ( d~a · d~b) ( d~x · d~b)

which proves the relation.

(c) Simply replace the Euclidean scalar product by the Minkowski scalar product:

dA2 = ( daµ daµ)( dbν dbν)− ( daµ dbµ)( daν dbν) = da2 db2 − ( da · db)2
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(d) Again we apply the chain rule

dA2 = ( daµ daµ)( dbν dbν)− ( daµ dbµ)( daν dbν)

=
(∂xµ
∂λ1

dλ1
∂xµ

∂λ1
dλ1
)(∂xν

∂λ2
dλ2

∂xν

∂λ2
dλ2
)

−
(∂xµ
∂λ1

dλ1
∂xµ

∂λ2
dλ2
)(∂xν

∂λ1
dλ1

∂xν

∂λ2
dλ2
)

=
(∂xµ
∂λ1

∂xµ

∂λ1
∂xν
∂λ2

∂xν

∂λ2
− ∂xµ
∂λ1

∂xµ

∂λ2
∂xν
∂λ1

∂xν

∂λ2

)
( dλ1)2( dλ2)2

=
(
g11g22 − g12g21

)
( dλ1)2( dλ2)2 = g ( dλ1dλ2)2.

Taking the square root we have to pay attention that the determinant may
be negative (if one of the vectors is timelike) but we want to have a positive
dA, so we take

dA =
√
|g| dλ1 dλ2.

(e) Comparing (d) with SNG = −T
∫

dA =
∫
LNG dλ1 dλ2 we get LNG =

−T
√
|g|. Fully written out in components this reads:

SNG = −T
∫ √∣∣∣∂xµ

∂λ1
∂xµ

∂λ1
∂xν
∂λ2

∂xν

∂λ2
− ∂xµ
∂λ1

∂xµ

∂λ2
∂xν
∂λ1

∂xν

∂λ2

∣∣∣ dλ1 dλ2
(f) We first compute the world sheet momenta Π1

µ and Π2
µ: (1P)

Π1
µ =

∂LNG
∂
(
∂xµ

∂λ1

) = 2
−T

2
√
|g|

(∂xν
∂λ2

∂xν

∂λ2
∂xµ
∂λ1
− ∂xν
∂λ1

∂xν

∂λ2
∂xµ
∂λ2

)
= − T√

|g|
(
g22∂1 − g12∂2

)
xµ

and likewise
Π2
µ = − T√

|g|
(
g11∂2 − g21∂1

)
xµ .

In order to bring this into contact with the Laplace-Beltrami operator, we need
the metric tensor with upper indices. According to the hint in the exercise,
gij is the inverse of gij . Fortunately, the inversion of a 2× 2 matrix is trivial:(

g11 g12

g21 g22

)
=

1

g

(
g22 −g12
−g21 g11

)
The world sheet momenta can then be rewritten as (1P)

Π1
µ = −T

√
|g|(g11∂2 + g12∂2)xµ , Π2

µ = −T
√
|g|(g22∂2 + g21∂1)xµ

which can now neatly be combined in a single expression:

Πi
µ = −T

√
|g| gij ∂j xµ .

Now, if we multiply the equations of motion ∂iΠ
i
µ = 0 from the left with

− 1

T
√

|g|
, we arrive at

1√
|g|

∂i
√
|g| gij ∂j xµ = 0
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(g) For the Polyakov action

SP = − 1

4πα

∫
dλ1 dλ2

√
|g| gij∂ixµ∂jxνηµν

the corresponding Lagrange density

SP =

∫
LP
(
{∂xµ
∂λ1
}, {∂xν

∂λ2
}
)
dλ1 dλ2.

is given by

LP = − 1

4πα

√
|g| gij ∂ixµ∂jxνηµν

Then the momenta read

Πi
µ =

∂LP
∂
(
∂xµ

∂λi

) =
∂LP

∂ (∂ixµ)
= − 1

2πα

√
|g| gij ∂jxνηµν = − 1

2πα

√
|g| gij ∂jxµ

Identifying T = 1
2πα this is exactly the same momentum as in (f), hence the

equations of motion ∂iΠi
µ = 0 will be the same as well.

(Σ = 12P)
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