Lecture and Tutorial – Prof. Dr. Have Hinrichsen – Maximilian Zemsch – SS 2021

Peter Woits slating review of String Theory

EXERCISE 5.1: POLYNOMIAL ACTION

In the lecture we derived the action of a point particle with mass m in a potential V:

$$S[\mathbf{x}, \dot{\mathbf{x}}] = \int_{\tau_A}^{\tau_B} \left(-mc\sqrt{-\eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} + V(\mathbf{x}) \right) \mathrm{d}\tau.$$

Some theorists do not like this action because of the nasty square root. They would rather prefer a *polynomial* action. In this exercise let us study the following polynomial action

$$S[\mathbf{x}, \dot{\mathbf{x}}, \xi] = \int_{\tau_A}^{\tau_B} L(\mathbf{x}, \dot{\mathbf{x}}, \xi) \,\mathrm{d}\tau = \int_{\tau_A}^{\tau_B} \left(\frac{1}{2\xi} \dot{x}_\mu \dot{x}^\mu - \frac{\xi m^2 c^2}{2} + V(\mathbf{x})\right) \,\mathrm{d}\tau,$$

where $\xi(\tau)$ is an additional independent function.

- (a) Compute the variation $\delta S = 0$ with respect to δx^{μ} and $\delta \xi$ and derive the corresponding equations of motion. (2P)
- (b) Insert the solution for $\xi(\tau)$ into the other equation of motion and show that we get the same results as for the ordinary action (see lecture notes). (1P)

EXERCISE 5.2: STRING THEORY

So far we have understood the physics of a relativistic particle. Such a particle is a zero-dimensional object which moves on a one-dimensional **world line** parameterized e.g. by $\lambda \mapsto \mathbf{x}(\lambda)$. For the action we have simply chosen the line integral over the relativistic length element $ds = \sqrt{-\dot{x}_{\mu}\dot{x}^{\mu}} d\lambda$.

Let us now do string theory. A string is a one-dimensional object which moves on a two-dimensional **world sheet** parameterized two parameters, e.g. by $\lambda^1, \lambda^2 \mapsto \mathbf{x}(\lambda^1, \lambda^2)$.

(a) As usual, the relativistic line element in the embedding space \mathbb{R}_{3+1} is $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$. On the world sheet the corresponding line element can be expressed as $ds^2 = g_{ij} d\lambda^i d\lambda^j$, where the Latin indices run over 1,2 and where the metric g_{ij} depends on the position on the world sheet. Give a general expression for g_{ij} . (1P)

(3P)

(9P)

- (b) Prove: In the ordinary Euclidean \mathbb{R}^n an infinitesimal area element dA spanned by two vectors $d\vec{a}$ and $d\vec{b}$ is given by $dA = \sqrt{(d\vec{a} \cdot d\vec{a})(d\vec{b} \cdot d\vec{b}) (d\vec{a} \cdot d\vec{b})^2}$. (1P)
- (c) Guess an analogous formula for the area element spanned by da and db in the 3+1-dimensional Minkowski space. (1P)
- (d) Let d**a** and d**b** be the displacements on the world sheet due to a variation of the parameters by $d\lambda^1$ and $d\lambda^2$, respectively. Show that the area element is given by $dA = \sqrt{|g|} d\lambda^1 d\lambda^2$, where g is the determinant of g_{ij} . (1P)
- (e) The Nambu-Goto action is defined as being proportional to the area of the sheet

$$S_{NG} = -T \int \mathrm{d}A$$

where T > 0 is a coupling constant (string tension). In a given parameterization of the world sheet, this action can be expressed as

$$S_{NG} = \int \mathcal{L}_{NG} \left(\{ \frac{\partial x^{\mu}}{\partial \lambda^{1}} \}, \{ \frac{\partial x^{\nu}}{\partial \lambda^{2}} \} \right) \, \mathrm{d}\lambda^{1} \, \mathrm{d}\lambda^{2}.$$

Determine the Lagrange density \mathcal{L}_{NG} . (1P)

(f) Analogous to the particle momentum $p_{\mu} = \frac{\partial L}{\partial \dot{x}^{\mu}}$, the string momentum is defined as

$$\Pi^{i}_{\mu} = \frac{\partial \mathcal{L}_{NG}}{\partial \left(\frac{\partial x^{\mu}}{\partial \lambda^{i}}\right)}$$

As there is no potential, the equations of motion are then simply given by $\partial_i \Pi^i_{\mu} = 0$. Show that these classical equations of motion are equivalent to the analog of the wave equation $\Box x^{\mu} = 0$, where \Box is the so-called **Laplace-Beltrami operator**: (2P)

$$\Box x^{\mu} = 0, \qquad \Box = \frac{1}{\sqrt{|g|}} \partial_i \sqrt{|g|} g^{ij} \partial_j$$

Hint: g^{ij} is the inverse matrix of g_{ij} .

(g) String theorist often prefer a different action, namely, the Polyakov action

$$S_P = -\frac{1}{4\pi\alpha} \int d\lambda^1 d\lambda^2 \sqrt{|g|} g^{ij} \partial_i x^{\mu} \partial_j x^{\nu} \eta_{\mu\nu}.$$

This action is sometimes easier to handle since it is polynomial in the coordinates (no square root). Show that this action renders exactly the same equations of motion. (2P)

$$(\Sigma = 12P)$$

Please submit your solution as a single pdf file via WueCampus. Deadline is Friday, May 21 at 12:00.