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Sample Solutions Exercise 1

Exercise 1.1: Polynomial vector space, basis and dual basis (6P)

The purpose of this exercise is to see that vectors can be realized in various forms. Here
we consider the example of second-order polynomials.

(a) Consider the set of 2nd-order polynomials

V =
{
p
∣∣∣ p(x) = a0 + a1x+ a2x

2
}

Show that this set equipped with the operations

′+′ :
(
p+ q)(x) := p(x) + q(x) p, q ∈ V

′ · ′ :
(
λp
)
(x)

:= λ p(x) p ∈ V, λ ∈ R

is a vector space over R. (1P)

(b) Show that {e1, e2, e3} defined by ei(x) = xi−1 is a basis of V . (1P)

(c) The dual vector space V ∗ consist of 1-forms that map polynomials to real numbers.
Therefore, the operation βx of evaluating a polynomial at the position x is obviously
an element of V ∗. More specifically, for all p ∈ V and x ∈ R let us consider

βx ∈ V ∗ : βx(p) := p(x) .

Prove that {β1, β2, β3} are linearly independent, providing a basis of V ∗. (1P)

(d) The dual basis {e1, e2, e3} is defined by the fundamental relation ej(ei) = δji .
Express the dual basis vectors as linear combinations of the 1-forms {β1, β2, β3}.
As usual, you may use Mathematica® or similar tools. (2P)

(e) Represent the 1-form

γ ∈ V ∗ : V 7→ R : γ(p) :=

∫ 1

0

p(x) dx

as a linear combination γ = µke
k in the dual basis. (1P)

Remark: You can verify your results in (d) and (e) by proving that

γ(p) =
23

12
p(1)− 4

3
p(2) +

5

12
p(3) .

As you can see, this functional, as strange as it looks like, correctly integrates second-
order polynomials in the range from 0 to 1.

Sample Solution

(a) Verify the vector space axioms (trivial):
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• V is a commutative group under addition.
• Identity element of scalar multiplication.
• Compatibility laws (distributive laws).

Correction advice: This part is correctly solved if it is pointed out
that the vector space axioms are satisfied since addition and multipli-
cation is defined as addition and multiplication of numbers, satisfying
the same distributive laws.

(b) We have e1(x) = 1, e2(x) = x, e3(x) = x2. First we have to show that these
vectors are linearly independent:

µiei = 0 ⇔ µiei(x) = 0∀x ⇔ µ1 = µ2 = µ3 = 0 .

Secondly we have to show that every other vector can be represented as a linear
combination of these vectors. Take any p ∈ V with p(x) = a0 + a1x + a2x

2.
Then it is clear that p = µiei with µi ≡ ai−1. Therefore, {e1, e2, e3} is a valid
basis.

(c) The forms {β1, β2, β3} applied to p(x) = a0 + a1x+ a2x
2 give the result

β1(p) = a0 + a1 + a2

β2(p) = a0 + 2a1 + 4a2

β3(p) = a0 + 3a1 + 9a2

In order to prove that they are also linearly independent we have to show
that any vanishing linear combination of them implies that the corresponding
coefficients are zero. In fact, let us assume that νiβi = 0, that is

νiβ
i(p) = (ν1 + ν2 + ν3)a0 + (ν1 + 2ν2 + 3ν3)a1 + (ν1 + 4ν2 + 9ν3)a2 = 0

for all p, or equivalently, for all {a0, a1, a2}. This means that the brackets have
to vanish, leading to a system of three linear equations

ν1 + ν2 + ν3 = 0

ν1 + 2ν2 + 3ν3 = 0

ν1 + 4ν2 + 9ν3 = 0

which has the only solution ν1 = ν2 = ν3 = 0. This implies that the forms
{β1, β2, β3} are indeed linearly independent. Since V is 3-dimensional, V ∗ is
also 3-dimensional (see lecture notes), hence {β1, β2, β3} are a basis of V ∗.

(d) We want to express the ej as linear combinations of the βk, that is, we want
to determine coefficients Cj

k such that

ej = Cj
kβ

k.

In order to determine these coefficients, we apply both sides of the equation
to the basis vector ei, giving (1P)

δji = ej(ei) = Cj
kβ

k(ei) , (∗)

where βk(ei) can be evaluated by

βk(e1) = 1 , βk(e2) = k , βk(e3) = k2 ⇔ βk(ei) = ki−1 .
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Therefore, the system of equations (*) can be written in matrix form as1
1

1

 =

C1
1 C1

2 C1
3

C2
1 C2

2 C2
3

C3
1 C3

2 C3
3

1 1 1
1 2 3
1 4 9


Thus, all what we have to do is to invert the matrix e.g. with Mathematica®

(1P) C1
1 C1

2 C1
3

C2
1 C2

2 C2
3

C3
1 C3

2 C3
3

 =

1 1 1
1 2 3
1 4 9

−1 =

 3 −3 1
−5

2 4 −3
2

1
2 −1 1

2

 .

Remark: Optionally, we can write out the result as

e1(p) = 3p(1)− 3p(2) + p(3)

e2(p) = −5

2
p(1) + 4p(2)− 3

2
p(3)

e3(p) =
1

2
p(1)− p(2) + 1

2
p(3)

which holds for all polynomials p. Now one can easily verify the result
by inserting the basis polynomials e1(x) = 1, e2(x) = x, e3(x) = x2 and
checking that ei(ej) = δij .

(e) The 1-form γ ∈ V ∗ can be represented as γ = µke
k with components µk =

γ(ek) (see lecture notes). These components can be evaluated easily as follows:

µk = γ(ek) =

∫ 1

0
xk−1 dk =

xk

k

∣∣∣1
0
=

1

k

hence
γ = e1 +

1

2
e2 +

1

3
e3 .

Remark: Inserting the results of (d) we get the strange result

γ(p) =
23

12
p(1)− 4

3
p(2) +

5

12
p(3) .

Nevertheless this result is correct. To see this insert a general 2nd order
polynomial p(x) = ax2+bx+c, giving γ(p) = a

3 +
b
2 +c, and this equals the

integral from 0 to 1 over this polynomial. Of course, this identity is only
valid for 2nd order polynomials on which we restricted here in this exercise.
What you see here is that in such a 3D space every linear functional in V ∗
is uniquely given if we know its behavior at three different positions (here
x = 1, 2, 3).

(Σ = 6P)
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